Jump to content
I Forge Iron

MrBi11

Members
  • Posts

    5
  • Joined

  • Last visited

Contact Methods

  • AIM
    m1sterbi11
  • Website URL
    http://hammertime-forge.com
  • Yahoo
    billpwnz

Converted

  • Location
    Michigan
  • Interests
    keping all my fingers
  1. just another new guy. gunna try my hand at this metal stuff...
  2. REALISTIC TOOL DEFINITIONS 1. DRILL PRESS: A tall upright machine useful for suddenly snatching flat metal bar stock out of your hands so that it smacks you in the chest and flings your pop across the room, splattering it against that freshly painted part you were drying. 2. WIRE WHEEL: Cleans paint off bolts and then throws them somewhere under the workbench with the speed of light. Also removes fingerprint whorls and hard-earned guitar calluses in about the time it takes you to say, "SH**!!!" 3. ELECTRIC HAND DRILL: Normally used for spinning pop rivets in their holes until you die of old age. 4. PLIERS: Used to round off hexagonal bolt heads. 5. HACKSAW: One of a family of cutting tools built on the Ouija board principle: It transforms human energy into a crooked, unpredictable motion, and the more you attempt to influence its course, the more dismal your future becomes. 6. VISE GRIP PLIERS: Used to round off bolt heads. If nothing else is available, they can also be used to transfer intense welding heat to the palm of your hand. 7. OXYACETYLENE TORCH: Used almost entirely for setting various flammable objects in your shop on fire. Also handy for igniting the grease inside a wheel hub you're trying to get the bearing race out of. 8. WHITWORTH SOCKETS: Once used for working on older British cars and motorcycles, they are now used mainly for impersonating that 9/16 or 1/2 socket you've been searching for the last 15 minutes. 9. HYDRAULIC FLOOR JACK: Used for lowering an automobile to the ground after you have installed your new disk brake pads, trapping the jack handle firmly under the bumper. 10. EIGHT-FOOT LONG DOUGLAS FIR 4X4: Used to attempt to lever an automobile upward off a hydraulic jack handle. 11. TWEEZERS: A tool for removing splinters of wood, especially Douglas fir. 12. TELEPHONE: Tool for calling your neighbor to see if he has another hydraulic floor jack. 13. SNAP-ON GASKET SCRAPER: Theoretically useful as a sandwich tool for spreading mayonnaise; used mainly for removing dog feces from your boots. 14. E-Z OUT BOLT AND STUD EXTRACTOR: A tool that snaps off in bolt holes and is ten times harder than any known drill bit. 15. TWO-TON HYDRAULIC ENGINE HOIST: A handy tool for testing the tensile strength of bolts and fuel lines you forgot to disconnect. 16. CRAFTSMAN 1/2 x 16-INCH SCREWDRIVER: A large motor mount prying tool that inexplicably has an accurately machined screwdriver tip on the end without the handle. 17. AVIATION METAL SNIPS: See hacksaw. 18. TROUBLE LIGHT: The home builder's own tanning booth. Sometimes called a drop light, it is a good source of vitamin D, "the sunshine vitamin", which is not otherwise found under cars at night. Health benefits aside, its main purpose is to consume 40-watt light bulbs at about the same rate that 105-mm howitzer shells might be used during, say, the first few hours of the Battle of the Bulge. More often dark than light, its name is somewhat misleading. 19. PHILLIPS SCREWDRIVER: Normally used to stab the lids of old-style paper-and-tin oil cans and squirt oil on your shirt; can also be used, as the name implies, to round off the interiors of Phillips screw heads. 20. AIR COMPRESSOR: A machine that takes energy produced in a coal-burning power plant 200 miles away and transforms it into compressed air that travels by hose to a Pneumatic impact wrench that grips rusty bolts last tightened 70 years ago by someone at Ford, and rounds them off. 21. PRY BAR: A tool used to crumple the metal surrounding that clip or bracket you needed to remove in order to replace a 50 cent part. 22. HOSE CUTTER: A tool used to cut hoses 1/2 inch too short. 23. HAMMER: Originally employed as a weapon of war, the hammer now-a-days is used as a kind of divining rod to locate expensive parts not far from the object we are trying to hit. 24. MECHANIC'S KNIFE: Used to open and slice through the contents of cardboard cartons delivered to your front door; works particularly well on boxes containing upholstered items, chrome-plated metal, and plastic parts.
  3. Modern industry depends on the manipulation of heavy metal and alloys: We need metals to build the tools and transportation necessary for day-to-day business. For example, we build cranes, cars, skyscrapers, robots, suspension bridges out of precisely formed metal components. The reason is simple: Metals are extremely strong and durable, so they're the logical choice for most things that need to be especially big, especially sturdy, or both. The funny thing is that metal's strength is also a weakness: Because metal is so good at resisting damage, it's very difficult to manipulate and form into specialized pieces. So how do people precisely cut and manipulate the metals needed to build something as large and as strong as an airplane wing? In most cases, the answer is the plasma cutter. It may sound like something out of a sci-fi novel, but the plasma cutter is actually a common tool that has been around since World War II. Conceptually, a plasma cutter is extremely simple. It gets the job done by harnessing one of the most prevalent states of matter in the visible universe. In this article, we'll cut through the mystery surrounding the plasma cutter and see how one of the most fascinating tools has shaped the world around us. Where Saws Failed In World War II, U.S. factories were cranking out armor, ordnance, and aircraft almost five times faster than the Axis powers. This was largely thanks to private industry's tremendous innovations in the field of mass production. One area of innovation rose out of the need to cut and join aircraft parts more efficiently. Many factories working on military aircraft adopted a new method of welding that involved the use of an inert gas fed through an electric arc. The breakthrough discovery was that charging the gas with an electric current formed a barrier around the weld, which protected it from oxidation. This new method made for much cleaner lines at the joints and much sturdier construction. In the early 1960s, engineers made a new discovery. They figured out that they could boost temperatures by speeding up the flow of gas and shrinking the release hole. The new system could reach higher temperatures than any other commercial welder. In fact, at these high temperatures, the tool no longer acted as a welder. Instead, it worked like a saw, cutting through tough metals like a hot knife through butter. This introduction of the plasma arc revolutionized the speed, accuracy and types of cuts manufacturers could make in all types of metals. In the next section, we'll examine the science behind this system. States of Matter A plasma cutter can pass through metals with little or no resistance thanks to the unique properties of plasma. So what is plasma? There are four states of matter in the world. Most things we deal with in our daily lives are in the form of solids, liquids, or gases. These states are divided based on the way that molecules behave within each one. Take water as an example: As a solid, water takes the form of ice. Ice is made up of neutrally charged atoms arranged in a hexagonal pattern that forms a solid. Because the molecules stay fairly still relative to each other, they form a solid -- something that holds its shape. As a liquid, water takes its drinkable form. The molecules are still bound to each other, but they move relative to each other at slow speeds. The liquid has a fixed volume, but no constant shape. It changes shape to fit whatever container you put it in. As a gas, water takes the form of steam. In steam, molecules move around at high speeds, independently of each other. Because the molecules are not bound to each other, a gas has no fixed shape or fixed volume. The amount of heat (which translates to the amount of energy) applied to water molecules determines their behavior and therefore their state. Simply put, more heat (more energy) excites molecules to the point that they break free of bonds that bind them together. With minimal heat, the molecules are tightly bound, and you get a solid. With more heat, the molecules escape the rigid bonds, and you get a liquid. With even more heat, the molecules escape the loose bonds, and you get a gas. So what happens if you were to heat gas even more? This brings us to the fourth state: plasma. What is Plasma? If you boost a gas to extremely high temperatures, you get plasma. The energy begins to break apart the gas molecules, and the atoms begin to split. Normal atoms are made up of protons and neutrons in the nucleus, surrounded by a cloud of electrons. In plasma, the electrons separate from the nucleus. Once the energy of heat releases the electrons from the atom, the electrons begin to move around quickly. The electrons are negatively charged, and they leave behind their positively charged nuclei. These positively charged nuclei are known as ions. When the fast-moving electrons collide with other electrons and ions, they release vast amounts of energy. This energy is what gives plasma its unique status and unbelievable cutting power. Inside a Plasma Cutter Plasma cutters come in all shapes and sizes. There are monstrous plasma cutters that use robotic arms to make precise incisions. There are also compact, handheld units that you might find in a handyman's shop. Regardless of size, all plasma cutters function on the same principle and are constructed around roughly the same design. Plasma cutters work by sending a pressurized gas, such as nitrogen, argon, or oxygen, through a small channel. In the center of this channel, you'll find a negatively charged electrode. When you apply power to the negative electrode, and you touch the tip of the nozzle to the metal, the connection creates a circuit. A powerful spark is generated between the electrode and the metal. As the inert gas passes through the channel, the spark heats the gas until it reaches the fourth state of matter. This reaction creates a stream of directed plasma, approximately 30,000 F (16,649 C) and moving at 20,000 feet per second (6,096 m/sec), that reduces metal to molten slag. The plasma itself conducts electrical current. The cycle of creating the arc is continuous as long as power is supplied to the electrode and the plasma stays in contact with the metal that is being cut. In order to ensure this contact, protect the cut from oxidation and regulate the unpredictable nature of plasma, the cutter nozzle has a second set of channels. These channels release a constant flow of shielding gas around the cutting area. The pressure of this gas flow effectively controls the radius of the plasma beam. Plasma on the Job Plasma cutters are now a staple of industry. They are used largely in custom auto shops as well as by car manufacturers to customize and create chassis and frames. Construction companies use plasma cutters in large-scale projects to cut and fabricate huge beams or metal-sheet goods. Locksmiths use plasma cutters to bore into safes and vaults when customers have been locked out. Plasma Art In the past, plasma cutters were prohibitively expensive and were used primarily for huge metal-cutting jobs. In recent years, the cost and size of plasma cutters have dropped considerably, making them available for more personal projects. Artists and metal workers use handheld cutters to create unique works of art that would never be possible with conventional metal-working tools. This single tool gives artists the ability to bevel cuts, bore precise holes and cut in just about any way they can conceive. The plasma cutter is one of the most interesting and powerful tools developed in the 20th century. Using basic principles of physics to harness the fourth state of matter, the plasma cutter performs with nearly magical results. One can only imagine, as our understanding of plasma grows, how many more tools and applications will utilize this fascinating force of nature. credit: http://howstuffworks.com
  4. so take that bolt from the hardware store toss it into the forge and mash the head
×
×
  • Create New...